
 The Front Line Battle Against P2P
Douglas Ennis

Ringling School of Art and Design
2700 North Tamiami Trail
Sarasota, Florida 34234

941-309-4706
dennis@ringling.edu

Divyangi Anchan
Ringling School of Art and Design

2700 North Tamiami Trail
Sarasota, Florida 34234

941-309-4150
danchan@ringling.edu

Mahmoud Pegah
Ringling School of Art and Design

2700 North Tamiami Trail
Sarasota, Florida 34234

941-359-7625
mpegah@ringling.edu

ABSTRACT
One of the prevalent topics under discussion in educational
environments today is the use of P2P (peer-to-peer) software. Aside
from being major bandwidth-eaters, the use of such software to
distribute and download copyrighted material has significant legal
and financial implications for the campus community. Having a
clear and concise policy restricting such use is one matter; enforcing
said policy has proved to be an entirely different and complex task.
Although it is elementary to prevent P2P traffic by blocking well-
known ports used by such software, the vast majorities majority of
P2P software, such as BitTorrent, download and upload pieces of
files from different sources on different ports[?]. P2P protocols and
client programs are working around ‘issues’ that prevent them from
functioning and are becoming more and more ‘intelligent’. The
detection of P2P traffic based on well-known ports and ‘port
guessing’ do not match the intelligence in newer generation P2P
protocols and software. False positives generated with the use of
well-known ports for detection are another serious concern. A good
approach would be a solution that detects P2P and other undesirable
traffic based on packet payload, as opposed to source and
destination ports. Commercial products available to address these
issues are expensive and not as flexible as the solution we discuss in
this paper.

Our proposed model is a combination of several open-source
solutions to which changes have been made to suit our environment
and requirements. We also discuss other possible model solutions
and discuss the pros and cons of such solutions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Access
controls, Information flow controls and Invasive software.

General Terms: Documentation, Performance, Security.

Keywords: Peer-to-peer software, Firewall, Router, Intrusion
Detection, Log Server, Log parsing tool, Snort, Snortsam,
IPTables.

1. INTRODUCTION
File sharing—the utilization of P2P (peer-to-peer) communication
networks to disseminate computer files among users of the P2P
communication networks—is one of the most important
challenges for educational institutions to address. These new
network protocols have significantly changed the way copyrighted
materials, including digital music, video games, and digital videos
can be distributed. Availability of fast network services on college
campuses along with other resources such as CD/DVD production
tools have made large scale distribution of copyrighted materials
possible and easy. "As of July 2002, KaZaA -- the most popular
peer-to-peer (P2P) file-sharing network by far -- boasted 100
million registered users. By May 2003, KaZaA had become the
worlds most downloaded software program of any kind, with
230.3 million downloads. All told, millions of users download
over 2.6 billion copyrighted files (mostly sound recordings) each
month via various peer-to-peer networks."[10]
The widespread illegal distribution of copyrighted materials using
well-known P2P applications is a concern not only for copyright
owners but also for network administrators on college campuses
where the file-sharing applications run. Ringling School of Art
and Design, like any other higher education institution, had to
grapple with the problems caused by P2P software, such as:
reduced bandwidth, fiscal ramifications, compromised security,
and potential legal backlash. These risks, combined with the
increasing sophistication of P2P protocols, have made addressing
this issue complex and require multiple approaches. At Ringling
School of Art and Design we have found that the first line of
defense must be education of the student body through
partnerships. Partnering with the Board of Trustees, Student Life,
President’s Office, faculty, and the students made our policy clear
and the expectations pronounced. Our policy was Zero-Tolerance
and the students’ expectations were the removal of their network
services with the support of the president, student life, and
campus faculty. We found that communication of our policy and
the reasoning behind such a policy had a significant impact on
students’ use of P2P. Our “firm approach” for the less obliging
student is an elaborate detection, logging, and enforcement system
that made our policy something palpable. These systems detect
the use of P2P protocols on our student housing and campus
networks, and through analysis, logging, and the eventual
restriction of network services. This “firm approach” combined
with an honest smile and straightforward policy has significantly
reduced the use of P2P on our campus. Within a short time of
our system and policy integration, network traffic dropped by
80% and we ceased receiving notices from the RIAA and other
similar agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGUCCS’04, October 10–13, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-869-5/04/0010...$5.00.

101

1.1 Partnerships
One of the first meetings between the Information Technology
division and students regarding their usage of P2P software
unearthed a major problem; students were unaware of the campus
security, copyright infringement, and ethical use policy, or were
unsure as to exactly what it encompassed. Our policy is signed by
all students at the beginning of the school year and outlines
acceptable and unacceptable usage of network resources and
potential ramifications of breaking the policy. Hindsight reveals
that the first week of school is not an appropriate platform to
outline the usage of school resources let alone be the only
interaction with said policy. Combating this gap in
communication became our department’s primary goal.
Educating students on what is acceptable usage of campus
resources and why these policies are in place was an effort that IT
could not overcome by itself; the entire campus community had to
embrace and be informed of the security, copyright infringement,
and ethical use policy. Our first step was to receive the
endorsement from the Board of Trustees and the President’s
Office to eliminate the sharing of copyrighted materials from our
campus. Once we received this endorsement, the next step was
to educate the Dean of Faculty, the faculty, and the Dean of
Student Life on why these protocols are treacherous to our
campus and how they can help. Some faculty have taken it upon
themselves to include a statement concerning our firm stand and
policy on P2P in their syllabus and communicate that they are
partnering with the IT department to address and resolve the P2P
issues on campus.

1.2 Partnerships Moving Forward
In the next year, IT plans on enhancing our communication with
students and faculty in key ways. Our first initiative is to partner
with the students from the beginning of the school year and
continue our message throughout the year. In collaboration with
the Director of Library Services, IT intends to hold seminars
concerning copyright issues through the year. Discussions will
encompass copyright laws and Ringling School of Art and
Design’s policy, why it is in place, and how this policy is
protecting them. The second initiative is to enhance our
partnership with Student Life and faculty, enabling them to talk
with students directly and answer question about our campus
security and standards of conduct in this information age. The
communication message must be that the School is taking a stand
against copyright infringement, not that the “IT department has
taken away my KaZaA or Bittorrent.” The key message must be
the unity of the School, from the Board of Trustees, officers,
senior administrators, school counselors, faculty, and staff.

2. POLICY ENFORCEMENT
FRAMEWORK
Intrusion Detection System (IDS) hold a very important place in
today’s Information Technology (IT) security infrastructure. The
use of IDS to detect impending or successful attacks has become
commonplace; today IDS are taking on a new role, that of
organizational policy enforcement entity aids. Most IDS use the
principle of ‘attack signatures’ to identify attack traffic on the
Network. This principle is now extended to detect traffic in
violation of organizational policy.

Several commercial and open-source solutions are available for
policy enforcement. Implementation of commercial products in

educational organizations is often wrought with budgetary
restrictions. Several open-source solutions are available that
implement parts of the functionalities desired in a policy
enforcement framework. While most organizations do implement
the different network security related detection, prevention, and
implementation entities, it has been our goal to integrate these
entities into a consolidated environment where information can
flow seamlessly between our firewalls, IDS, and log server, and
can be viewed from a centralized console. Implementation of a
centralized log server and its integration with the policy
enforcement entities has been one of the primary goals in this
project. In this section, we present the different building blocks
that are part of our policy enforcement framework. All pieces of
this framework are open-source based solutions, some of which
are implemented without customization and others with source
code modification and addition.

2.1 Background Information
Due to the limitation on the length of this paper, we are unable to
provide detailed introductory material on the protocols,
technologies, and open-source products referred to in this paper.
It is beyond the scope of this paper to discuss installation
instructions for each product referenced in this paper, and readers
will be referred to installation instructions where appropriate.
Interested users should refer to Snort [1], SnortSam [2], Syslog-
ng [3] and IPTables [4] for more information.

Table 1 provides a summary of the implementation details of the
building blocks of the framework.

2.2 Model Setup
A model of our policy enforcement framework is illustrated in
Figure 1. The basic functionality of detecting policy infringements
is performed by the implemented IDS. In our case, the IDS is
Snort. The IDS, upon infringement detection, communicates with
a policy implementation plug-in, which is capable of limiting
access to the offending computer systems. This limitation can be
in the form of blocking all further traffic from that source. The
policy implementation plug-in in our framework is SnortSam, a
program that resides in the firewall (IPTables) system and
modifies the firewall rule-set based on directions received from
the IDS. The plug-in sends log messages pertaining to changes
made in the firewall rule-set to a centralized log server (Syslog-
ng). A log parsing utility parses policy enforcement related logs

Table 1 Framework Entity Summary

Framework Entity Product/ Operating System

IDS Snort / Linux

Firewall IPTables / Linux

Policy Enforcement Plug-in SnortSam / Linux

Log Server Syslog-ng / Linux

Log parser Custom Perl Script

Front End Custom Perl script and C
programs

102

Policy Implementation
Plug-in

[Firewall]

Log Server

Front End Log Parser

 www

IDS

Alerts Alerts Logs

on the log server. The presence of a centralized log server and a
log parsing utility enables administrators to access such logs and
other historical and aggregated information from a web-based
front end.

3. BUILDING BLOCKS
In this section, we discuss the different building blocks of the
policy enforcement framework.

3.1 Intrusion Detection System - Snort
Snort [1] is a popular, open-source IDS written by Marty Roesch.
It will not surprise us if many of the readers of this paper are
Snort users. Basic installation and configuration instructions for
Snort are packaged with the Snort distribution; the user manual
can be found on the web [5]. Before Snort is compiled and
installed, users should patch the Snort source to include the
SnortSam output plug-in capabilities [6]. Instructions for applying
the patch are available in the download.

3.2 Policy Implementation Plug-in - SnortSam
Snortsam [2] is a Snort plug-in developed by Frank Knobbs. This
plug-in works in tandem with Snort to block IP addresses that
trigger policy infringement alerts in Snort. SnortSam is currently
implemented to work with a wide array of firewall products
including IPTables, Cisco’s PIX firewall, Cisco’s popular Access
Control Lists (ACL) on routers, Netscreen and Checkpoint
firewall.

Although SnortSam is an excellent product in its basic
implementation, the authors of this paper desired more than the
simplistic approach of dropping offending traffic. IT shops strive
to reduce support calls to their help desk staff ,and blindly
blocking offending computer systems would have been a
guaranteed way of increasing support calls. With simple
modifications to the SnortSam source code, we introduced re-
direction rules for IPTables which re-directed all traffic from the
offending computer system to a website which displayed essential
information such as reasons for network access shutdown, contact
information to our IT department, etc., to the user. The reader can
refer to Appendix A, Part I for source code corresponding to this
section.

The logging framework for centralized logging was designed and
implemented in-house from scratch. The default implementation
of SnortSam logs to a flat file. SnortSam provides three default

log levels: 0=off, 1=sparse, 2=normal, 3=verbose. We introduced
a new log level: 4=log server. Source code modifications were
made to recognize log server related configurations in the
SnortSam configuration file and to process and direct log
messages to the centralized log server when required. Source code
was also added to call the logging function when IP address
blocking and un-blocking rules were called in SnortSam. Readers
can refer to Appendix A, Part II for information on source code
corresponding to this section. The major source code
modifications made to achieve the centralized logging
functionality are summarized below:

1. Introduce log server related configuration options and a
new log level to indicate logging to the log server
(snortsam.c).

2. Extend the logging function (logmessage() in
snortsam.c) in SnortSam to direct log messages to the
log server based on the log level.

3. Invoke logging function (logmessage()) with log level =
4 for block and un-block rule changes made to firewall
(call logmessage() in ssp_iptables.c for block and
snortsam.c for un-block).

Readers can contact the authors of this paper for the modified
version of SnortSam.

3.3 Log Server – Syslog-ng
Because of its enhanced feature-set, we decided to use Syslog-ng
as the centralized log server. Installation instructions can be found
at [3].

3.4 Log Parsing Utility
Log parsing and its presentation to a front-end for viewing are
done in two parts.
The first part is a generic log parsing and log mailing utility
(logparser.pl) that is capable of parsing logs from any source on
the log server. Although there are several log parsing, evaluating,
and report generating open-source solutions available [8], we
found LogSentry [7] to be an excellent parsing utility which
works in tandem with Syslog-ng and its logging mechanisms. Due
to specific internal requirements and LogSentry’s lack of mailing
functionality, we have implemented a custom log parsing and log
mailing utility (logparser.pl) in Perl. This tool is written on the
lines of LogSentry and follows similar parsing logic as LogSentry.
‘logparser.pl’ uses keywords in four files to weed out logs.

• logcheck.violations: contains all keywords that
indicate a possibility of violations in log files. This file
can be used to parse out policy violations using
keywords ‘BLOCKINFO’ and ‘UNBLOCKINFO’
introduced in logs sent to the log server from the
SnortSam plug-in for IPTables.

• logcheck.violations.ignore: is used to indicate
keywords that generate false positives. ‘logparser.pl’
ignores all logs that contain these keywords.

• logcheck.hacking: contains keywords that indicate
intrusion attempts on the server generating the logs.

• logcheck.ignore: contain generic keywords that should
be ignored in all log files.

Figure 1 Model Policy Enforcement Framework

103

‘logparser.pl’ outputs the above logs to files with name format
‘type.output@server name’ (where type=violation/ hacking). All
other logs are output to a file named ‘unusual.output@server
name’.
The second part is a utility (blockUpdater.pl) that uses the parsed
logs generated by logparser.pl. This utility pairs the different
‘BLOCK’ and ‘UNBLOCK’ logs based on their ‘blockid’s, and
isolates IP addresses that are currently in ‘block’ stage. It then
formats the logs for presentation to a web browser. This utility can
be used alongside CGI (Common Gateway Interface) programs or
other program written to interact with a web browser.
Readers can contact the authors of this paper to obtain these tools.

4. ACKNOWLEDGMENTS
We thank Dr. Larry Thompson, President, Ringling School of Art
and Design, for his continuous support, strong advocacy for
ethical use of information technology resources, and insightful
vision for promoting the standards of information age conduct on
campus. Kathleen List, the Director of Library Services, has
educated us and our campus community on issues related to the
copyright acts and issues; we are lucky to have her on board. We
gratefully acknowledge the support of our faculty and students for
partnering with us to address P2P issues on campus. Of course,
this work would not be possible without the diligent work and
support of our fellow staff at the Information Technology
division.

5. REFERENCES
[1] Snort, http://www.snort.org
[2] SnortSam, http://www.snortsam.net
[3] Syslog-ng, http://www.balabit.com/products/syslog_ng
[4] Netfilter / IPTables, http://www.netfilter.org
[5] Snort User Manual, http://www.snort.org/docs
[6] Snort patch for SnortSam,

http://www.snortsam.net/download.html
[7] Linux 2.4 NAT Howto,

http://www.netfilter.org/documentation/HOWTO/NAT-
HOWTO.html

[8] Log Analysis and Parsing, http://loganalysis.org
[9] Logcheck/LogSentry, Log Parsing Utility,

http://sourceforge.net/projects/sentrytools
[10] President of Recording Industry Association of America,

Carl Sherman's testimony before Senate Committee on
Commerce, Science, and Transportation, September 17,
2003.
http://commerce.senate.gov/hearings/testimony.cfm?id=919
&wit_id=2584

6. APPENDIX A
Unless stated otherwise, the following code fragments should
be added to the referenced source files. Text in bold format
indicates additions made to existing code/ data structures. The
authors’ comments are in bold and italics. Code in close
proximity to added code is included.

6.1 Part I
The SnortSam plug-in for IPTables is ‘ssp_iptables.c’. The default
behavior of the plug-in is to add ‘DROP’ rules ‘to the ‘FORWARD’
and ‘INPUT’ chains of IPTables. We replace the ‘DROP’ rules with
Network Address Translation (NAT) rules. Readers must ensure that
IPTables has been configured to load the modules required to
perform NAT’ing on the firewall (the basic NAT module is:
iptable_nat.o). Refer to [7] for information on NAT in IPTables.

Logging Before Modified Block Code (File: ssp_iptables.c)
Function void IPTBlock(BLOCKINFO*,void*) {
 struct tm *tp;
 <snip>
 if(bd->block) {
 snprintf(msg,sizeof(msg)-1,"Info: Blocking ip %s",
 inettoa(bd->blockip));
 logmessage(3,msg,"iptables",0);
 tp = localtime(&(bd->blocktime));
 snprintf(msg,sizeof(msg)-1,"BLOCKINFO:%d: Blocking
 access to and from %s on %04i/%02i/%02i at
 %02i:%02i:%02i for %d seconds",
 bd->blockid,inettoa(bd->blockip),
 tp->tm_year+1900,tp->tm_mon+1,tp->tm_mday,
 tp->tm_hour,tp->tm_min,tp->tm_sec,
 bd->duration);
 logmessage(4,msg,"iptables",bd->blockip);
 <snip>
}

Modified Block Code:
/* Assemble command */
 if (snprintf(iptcmd,sizeof(iptcmd)-1,
"/sbin/iptables -t nat -A PREROUTING -p tcp -s %s -j DNAT
--to-destination w.x.y.z:80", inettoa(bd->blockip)) >= sizeof(iptcmd)) {

snprintf(msg,sizeof(msg)-1,"Error: Command %s is to long",
iptcmd);
logmessage(1,msg,"iptables",0);
return;

}
if (snprintf(iptcmd2,sizeof(iptcmd2)-1,
"/sbin/iptables -I INPUT -s %s -j DROP", inettoa(bd->blockip)) >=
sizeof(iptcmd2)) {

snprintf(msg,sizeof(msg)-1,"Error: Command2 %s is to long",
iptcmd2);
logmessage(1,msg,"iptables",0);
return;

}

Modified Un-Block Code:
/* Assemble command */
if (snprintf(iptcmd,sizeof(iptcmd)-1,
"/sbin/iptables -t nat -D PREROUTING -p tcp -s %s -j DNAT
--to-destination w.x.y.z:80", inettoa(bd->blockip)) >= sizeof(iptcmd)) {

snprintf(msg,sizeof(msg)-1,"Error: Command %s is to long",
iptcmd);
logmessage(1,msg,"iptables",0);
return;

}
if (snprintf(iptcmd2,sizeof(iptcmd2)-1,
"/sbin/iptables -D INPUT -s %s -j DROP", inettoa(bd->blockip)) >=
sizeof(iptcmd2)) {

snprintf(msg,sizeof(msg)-1,"Error: Command2 %s is to long",
iptcmd2);
logmessage(1,msg,"iptables",0);
return;

}

6.2 Part II
In this section we present the source code additions made to
SnortSam to extend its logging functionality.

104

File: snortsam.h
include <limits.h>
<snip>
/* Log Server Defaults */
#define LOGSERVER_PORT 514 /* Default syslog UDP Port */
#define MAX_LOGSERVERPORT 65535
<snip>
typedef struct _blockinfo { /* Block info structure */

unsigned long blockip;
unsigned long peerip;
time_t duration;
time_t blocktime;
unsigned short port;
unsigned short proto;
unsigned short mode;
short block;
unsigned long blockid;

} BLOCKINFO;
The variable ‘blockid’ helps pair the ‘block’ and ‘un-block’ log messages
in the log server. The log parsing utility can use this variable to weed out
IP addresses that were blocked and un-blocked and only display to the
front-end IP addresses that are in the ‘block’ stage.

/* Enumerated data structure to indicate log server socket type */
enum socktype {TCP, UDP};
/* Log Server Structure */
typedef struct _logserver {

struct sockaddr_in socklogserver;
enum socktype stype;
struct _logserver *next

} LOGSERVER;
This structure is used to store log server related information including. A
pointer is provided (‘next’) for future use to maintain a list of log servers.

File: snortsam.c
LOGSERVER *logserverp = NULL:
LOGSERVER mylogserver;
<snip>
Function void getout(int) {
 <snip>
 if(callersock)

closesocket(callersock);
 if(mysock)

closesocket(mysock);
 if (lssock)

closesocket(lssock);
 <snip>
}
<snip>
Function void logmessage (unsigned int, char*, unsigned long) {
 int sendlen;
 <snip>
 if (!daemonized) {

printf(logmsg);
printf(“\n”);

 }
 if ((loglevel == 4) && (level == 4)) {
 printf("Sending logs to the logserver %s\n",
 inettoa(logserverp->socklogserver.sin_addr.s_addr));
 if (logserverp->stype == TCP) {

if ((lssock = socket(AF_INET,SOCK_STREAM,0))==-1){
snprintf(msg,sizeof(msg)-1,"Error creating log server
socket!");
logmessage(3,msg,"logmessage",0);

 }
 }
 else {
 if ((lssock = socket(AF_INET,SOCK_DGRAM,0)) == -1){

snprintf(msg,sizeof(msg)-1," Error creating log server
socket!");
logmessage(3,msg,"logmessage",0);

 }
 }
 if(connect(lssock,
 (struct sockaddr*)&(logserverp->socklogserver),
 sizeof(struct sockaddr)) == -1) {

snprintf(msg,sizeof(msg)-1,"Unable to contact log server.");
logmessage(3,msg,"logmessage",0);

 }

 sendlen = strlen(logmsg);
 send(lssock,logmsg,sendlen,0);
 closesocket(lssock);
 <snip>
}

Function parseline (char*, bool, char* unsigned long) {
 <snip>
 else if(!stricmp(arg,"loglevel {
 remspace(val);
 loglevel=atol(val);
 }
 else if (!stricmp(arg,"logserver")) {
 char* token;
 char* tailptr;
 unsigned long port;
 char tempval[STRBUFSIZE+2];
 remspace(val);
 strcpy(tempval,val);

 logserverp=&mylogserver;

 /* Fill the sockaddr_in struct */
 logserverp->socklogserver.sin_family=AF_INET;

 /* Look for port number */
 if (strstr(tempval,":") == NULL) { /* Single Value */
 if ((strstr(tempval,".")) == NULL) {
 snprintf(msg,sizeof(msg)-1,"Format for logserver is

 IP:Port:Protocol. Atleast IP should be provided");
 logmessage(3,msg,"snortsam",0);
 exit(1);
 }
 else { /* Valid IP...hopefully */
 if((logserverp->socklogserver.sin_addr.s_addr =

getip(tempval)) == 0) {
 snprintf(msg,sizeof(msg)-1,"Error resolving log

 server '%s', val);
 logmessage(3,msg,"snortsam",0);
 exit(1);

 }
 snprintf(msg,sizeof(msg)-1,"Using Default Port

 %d\n",LOGSERVER_PORT);
 logmessage(3,msg,"snortsam",0);
 logserverp->socklogserver.sin_port =

htons(LOGSERVER_PORT);
 }
 else { /* More Values */
 token = strtok(tempval,":");
 if ((logserverp->socklogserver.sin_addr.s_addr =

getip(token)) == 0){
 snprintf(msg,sizeof(msg)-1,"Error resolving log

 server '%s'.", val);
 logmessage(3,msg,"snortsam",0);
 exit(1);
 }
 if ((token = strtok(NULL,":")) != NULL) {
 port = strtoul(token,&tailptr,0);
 if ((port == ULONG_MAX) || (port >=

MAX_LOGSERVERPORT)) {
 snprintf(msg,sizeof(msg)-1,"Please specify valid

logserver port\n");
 logmessage(3,msg,"snortsam",0);
 exit(1);
 }
 else {
 logserverp->socklogserver.sin_port =

htons(port);
 }
 }
 else {
 snprintf(msg,sizeof(msg)-1,"Using Default Port

%d\n",LOGSERVER_PORT);
 logmessage(3,msg,"snortsam",0);
 logserverp->socklogserver.sin_port =

htons(LOGSERVER_PORT);

105

 }
 }
 memset(&(logserverp->socklogserver.sin_zero),'\0',8);
 if (strstr(val,"TCP") != NULL) {
 logserverp->stype = TCP;
 }
 else if (strstr(val,"UDP") != NULL) {
 logserverp->stype = UDP;
 }
 else
 logserverp->stype = UDP;

 logserverp->next = NULL;
 }
 <snip>
}

Function block (SENSORLIST*, unsigned long, unsigned short, unsigned
long, unsigned short, unsigned short, time_t, unsigned char, time_t) {
 <snip>
 /* checks here */
 if (dontblockhost(blockip)) {
 snprintf(msg,sizeof(msg)-1,"Ignoring block for white-listed

host %s.",inettoa(blockip));
 logmessage(3,msg,"snortsam",snortbox->snortip.s_addr);
 }
 else {
 blockdata.blockip=blockip;
 /* Assign an ID for the request */
 blockdata.blockid = (unsigned long)rand();
 }
 <snip>
}

Function parsefile (char*, bool, char*, unsigned long) {

 <snip>
 fclose(fp);
 /* Ensure if loglevel = 4 then a logserver has been given. */
 if ((loglevel != 4) && (logserverp != NULL)) {
 snprintf(msg,sizeof(msg)-1,"Logserver configuration

ignored since loglevel is not 4");
 logmessage(3,msg,"snortsam",0);
 }
 if ((loglevel == 4) && (logserverp == NULL)) {
 snprintf(msg,sizeof(msg)-1,"A logserver configuration

is required when loglevel is 4");
 logmessage(3,msg,"snortsam",0);
 exit(1);
 }

}

Function main {
 <snip>
 /* Unblock Handler */
 <snip>
 time(&ttime);
 tp=localtime(&ttime);
 snprintf(msg,sizeof(msg),"UNBLOCKINFO:%d: Unblocking
 access to and from %s on %04i/%02i/%02i at
 %02i:%02i:%02i",bhp->blockinfo.blockid,
 inettoa(bhp->blockinfo.blockip),tp->tm_year+1900,
 tp->tm_mon+1,tp->tm_mday,tp->tm_hour,
 tp->tm_min,tp->tm_sec);
 logmessage(4,msg,"snortsam",0);
 addrequesttoqueue(FALSE,&(bhp->blockinfo),FALSE,FALSE);
 /* add unblock request to queue */
 <snip>
}

106

